List library
All functions are morphic.
element_in_list (list list, string element -> int value)
Returns 1 if “element” is a member of “list”, 0 otherwise.
invert_list (list list -> list list)
Reverses the order of “list” and returns it.
length_of_list (list list -> int value)
Returns the number of elements in “list”.
(legacy name: “count_list”)
push (str head, list tail -> list list)
Adds head onto the front of tail and outputs the result.
read_in_assoc_array (str file, [str location, str locbase] -> key-value-list list)
As read_in_list, except that “file” should be either a 2+-column 2da, a 3+-column 2da where the 2nd column is all “=>”, or a 1+-column 2da where the first column consists of key=>value pairs, and the output is read into a key=>value list in the obvious way.
read_in_list (str file, [str location, str locbase] -> list list)
Reads in the file “file”, located in the directory specified by “location” and “locbase” (see get_directory), which should be a 2da. Output its first column as a space-separated list.
return_first_entry (list list, [str separator] -> list list, str entry)
Returns the first element of “list” as “entry” and the remainder as “list”. Optionally, if “separator” is set to any one-character string, “list” will be treated as a list of strings separated by that string rather than by space. Fails if “list” is empty.
(Legacy name: action_return_first_entry)
return_first_pair (key-value-list list -> str key, str value, arrow-list list)
Returns the first key-value pair of “list” as “key” and “value”; returns the remainder of the list as “list”. Fails if “list” is empty.
(Legacy name: action_return_first_pair)
split_from_left (list string, str splitter -> list left, list right)
Finds the first occurrence of “splitter” in “string”; breaks the list in two at that point (discarding that occurrence itself) and returns the two parts.
split_from_right (list string, str splitter -> list left, list right)
Finds the last occurrence of “splitter” in “string”; breaks the list in two at that point (discarding that occurrence itself) and returns the two parts.
write_list (str file, list list, [str location]->null)
Takes the contents of list, and append them, one per row, to “file”, located in “location”, or in %workspace% if location is not set. (NB: “location” is absolute, not relative to your mod directory or to component_loc.) Creates the file if it does not already exist.


Tools library
Action functions
consolidate_table (str in, str out, [str location] -> null) 
Read in the table “in” from “location” (which is absolute, not relative to your mod base location), or from %workspace% if location is not set. “in” should be a 2-column array. For each distinct element in the first column, make a space-separated list of all the elements in the second column. Output to “out”, in the same base location, a file where the first column is the distinct first-column elements of “in” and the remainder is a list of the 2nd-column elements.
(So 
animal cat
animal dog
monster yeti

would become
animal cat dog
monster yeti)

include (list files, [str location, str locbase]-> null)
Include each file in the list as tp2 code, looking in whatever location is defined by “location” and “locbase” (see get_directory). Prior to inclusion, MAKE_PATCH is replaced by ACTION_CLEAR_ARRAY patch_data ACTION_DEFINE_ASSOCIATIVE_ARRAY patch_data BEGIN, and PUSH foo bar is replaced by SPRINT foo “%foo%”^bar. Fail if any of them cannot be found.
“file” is an acceptable synonym for “files”. Note that because this inclusion occurs within a function, it cannot be used to permanently set or modify variables. (Use plain WEIDU INCLUDE to do that.)
process_table (str table, func function, [str inline, str location, str locbase] -> null)
Read in the file “table”, located at the location specified by “location” and “locbase” (see get_directory), or located inline at …/stratagems_inline if inline is set to “yes”. “table” should be a 2da where the first row gives the names of the entries in the remaining rows.
For each row, treat the elements of the first row as variable names, set those variables to the values in the row, and feed the result as STR_VAR inputs to “function”.
run (list files, [str location, str locbase, str version]-> null)
For each element “func” of “files”, look for “func.tpa” in whatever location is defined by “location” and “locbase” (see get directory). Include it, and then attempt to run the ACTION_FUNCTION “func”, with “version” (if set) as an argument. (So “func.tpa” should consist of a function definition for func along with any auxiliary functions required.) Prior to inclusion, carry out the same substitutions as for include. Fail if any file is missing or fails to contain the required function.
“file” is an acceptable synonym for “files”. Note that because this inclusion occurs within a function, it cannot be used to permanently set or modify variables. (But you shouldn’t even be trying to do that with run!)

Patch functions
get_field_value(int loc, int length -> int value)
If “length”, is 1, 2, or 4, issue the appropriate READ_BYTE/ SHORT/ LONG command to read that many bytes at “loc”, and return it. Otherwise, fail. 
read_rest_of_line (int row, int col, int colmin -> list list)
In the current file (which should be a 2da), look at all rows with >= colmin columns. In the “row”th such row, read in everything from column “col” onwards as a list. (This is useful for “2da” files with varying-length rows.)
set_field_value(int loc, int length, int arguments -> null)
If “length”, is 1, 2, or 4, issue the appropriate WRITE_BYTE/ SHORT/ LONG command to write “arguments” to that many bytes at “loc”, and return it. Otherwise, fail. (“value” is a legal legacy alternative to “arguments”.)

Morphic functions
check_ini (str ini -> int value)
Returns the value of the “ini” entry ini file (read in at the start of SFO installation), or zero if that entry is not set.
(Legacy names: action_check_ini, patch_check_ini)
check_label (str label -> int value)
Returns 1 if a file called [label].mrk exists in the override (or in %workspace%, if put_labels_in_workspace is set to 1 in the ini file); returns 0 otherwise. Used for component detection along with make_label (consider using Weidu LABEL instead if your mod isn’t too complicated).
color (int red, int green, int blue -> int color)
“red”, “green” and “blue” should be in the range 0-255, and are combined into a 4-byte LONG integer according to IE game conventions.
count_hundreds (int counter, int hundreds, [str task] -> int counter, int hundreds)
Adds one to counter; if the result is 100, sets counter to zero, adds 1 to hundreds, echoes “%hundreds%00 task”. The default value of “task” is “files analysed”: the intended use of this is to give an end user feedback on how much of a large task has been done.
edit_sanity_check(str editstring, str edits, [str task] -> null)
Fails if either (i) “editstring” is neither empty nor contains “=>” (meaning that it’s not a key=>value list), or (ii) “edits” contains “=>” (meaning that it isn’t the name of an array, and plausibly is a key=>value list). If “task” is set, quotes it in the failure message.
ensure_hex (int in, [int pad_length] -> str out)
[bookmark: _GoBack]Convert “in” into the string that is its hex representation. If pad_length is set, string is padded out to be at least that many digits (so if pad_length=8, 32 would be converted to 0x00000020).
get_directory([str location, str locbase]-> str directory)
Returns a directory, which is either [mod base directory]/component_loc/local_loc/location if locbase is empty, or [mod base directory]/locbase/location otherwise. Empty values of any of component_loc, local_loc or location are dealt with correctly (i.e. you won’t get // occurring).
(Legacy name: action_get_directory)
key_value_sanity_check(int is_key, str arguments -> null)
Fails, with a vocal warning, if either (i) “arguments” is a key=>value list and is_key=0, or (ii) “arguments” is not a key=>value list and is_key=1.
log_this (str input, str file, [str loc, str repeat=yes] -> null )
Append “input” to the file “file” located at “loc”, or in %workspace% if loc is not set; if the file does not exist, create it. 
If “repeat” is set to “no” (or “NO”) then the string will only be appended if it is not already there (as a full line).
make_label (str label -> null)
Create an empty file called “[label].mrk” in the override (or in %workspace% if you set “put_labels_in_workspace” to 1 in the ini file.) Used for component detection along with check_label (consider using Weidu LABEL instead if your mod isn’t too complicated).
reinclude_this (str input -> null)
Does variable substitution on “input” and then REINCLUDEs it (via PATCH_REINCLUDE or REINCLUDE according to context) as tp2 input.
NB: since this is a function, it can’t be used to set or modify variables. Use the “reinclude_this” macro if you want to do that.
(Legacy names: action_reinclude_this, patch_reinclude_this)
return_first_letter (str input -> str firstletter, str rest)
Returns the first character, and the remainder, of “input”.
return_function_and_argument (str input -> str function, str argument)
If “input” has the form “function(argument)”, returns function and argument; otherwise, fails.
reverse_long (int input -> int output)
Treat the input as a 4-byte LONG, and reverse the first and last SHORT. (If you’re not sure why you want to do this, you don’t.)
strip_quotes_from_string (str string -> str string)
Removes any leading and trailing ‘~’ and ‘”’ from the string.
strip_spaces_from_string (str string -> str string)
Removes any leading and trailing spaces from the string.
warning (str arguments -> null)
Logs the text in “arguments” (unless blank or equal to “null”) to %workspace%/sfo_warnings.txt, and echoes it to the screen. “warning” is an acceptable synonym for “arguments”.
(Legacy names: action_display_warning, patch_display_warning)
